You may also like

Instant Insanity

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Network Trees

Explore some of the different types of network, and prove a result about network trees.

Magic Caterpillars

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Maximum Flow

Age 16 to 18
Challenge Level


max flow graph

The graph represents a supply network from $A$ to $B$ and the numbers on the edges of the graph show the maximum capacity for flow in each of the sections.

Imagine any straight line cutting through edges of the graph (but not through vertices) such that $A$ is on one side of the line and $B$ is on the other. All the flow from $A$ to $B$ has to go along the edges cut by your line so the total flow from $A$ to $B$ is less than or equal to the sum of the flows along those edges. Considering all possible such cuts, why is it that the maximum flow from $A$ to $B$ is less than the minimum sum for all cuts? Find the maximum flow in this example.
cube graph with max flows

In the second example the network is a cube. Find the maximum flow from $A$ to $G$.