You may also like

Target Six

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

8 Methods for Three by One

This problem in geometry has been solved in no less than EIGHT ways by a pair of students. How would you solve it? How many of their solutions can you follow? How are they the same or different? Which do you like best?

An Introduction to Complex Numbers

A short introduction to complex numbers written primarily for students aged 14 to 19.

Roots and Coefficients

Age 16 to 18
Challenge Level

Congratulations Sue Liu of Madras College, St Andrew's on your solution to this problem. The title of this problem is the clue to getting a neat solution. We are given:
\begin{eqnarray} \\z_1z_2z_3 &=& 1 \quad &(1) \\ \\z_1+z_2+z_3 &=& {1\over z_1} + {1\over z_2} + {1\over z_3} = x \quad &(2).\\ \end{eqnarray}
Just consider the cubic equation $$z^3 + az^2 + bz +c = (z - z_1)(z - z_2)(z - z_3) = 0$$ with roots $z_1, z_2$ and $z_3$. We know that $a= -(z_1+z_2+z_3)$, $b= z_1z_2+z_2z_3+z_3z_1$ and $c= -(z_1z_2z_3)$. As we are given the product of the roots in (1) we know that $c= -1$.

A little experimentation with the second identity (2) gives a relationship between $a$ and $b$.

From (2) $${{z_1z_2+z_2z_3+z_3z_1}\over {z_1z_2z_3}} = x$$ and, using (1) this gives $${z_1z_2 + z_2z_3 + z_3z_1}= x$$ Hence the cubic equation is $$z^3 - xz^2 + xz - 1 = (z - 1)(z^2 + (1 - x)z + 1) = 0 \quad (3).$$ The factor $(z - 1)$ of this cubic equation shows that one of the values of z must be 1.

For the other two roots to be real the quadratic factor in (3), $$z^2 + (1 - x)z + 1 = 0$$ must have real roots in which case
\begin{eqnarray} (1 - x)^2 - 4 &\geq& 0 \\ x^2 - 2x - 3 &\geq& 0 \\ (x + 1)(x - 3) &\geq& 0.\\ \end{eqnarray}
If $(x + 1)(x - 3)\geq 0$ then $x \leq -1$ or $x\geq 3$. So the other two roots are real when the value of $$ z_1 + z_2 + z_3 = {1\over z_1} + {1\over z_2} + {1\over z_3}= x $$ is less than or equal to -1 or greater than or equal to 3.