Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Stick Images

## You may also like

### Summing Consecutive Numbers

### Where Can We Visit?

### Path to the Stars

Or search by topic

Age 7 to 14

Challenge Level

- Problem
- Getting Started
- Student Solutions
- Teachers' Resources

Vicente”¨ from St Matthew's School wrote;

I am the recource manager and my friend Robert is understanding coordinator and Elijah is the facilator and we work excellently in a team.

Thank you for that Vincente, I imagine that when classes or groups have used this activity then there did not seem to be much to write about from a pupil's point of view. However, we are always happy to hear from children or teachers about how our activities work. Don't worry if you haven't got a 'solution' as such.

I am the recource manager and my friend Robert is understanding coordinator and Elijah is the facilator and we work excellently in a team.

Thank you for that Vincente, I imagine that when classes or groups have used this activity then there did not seem to be much to write about from a pupil's point of view. However, we are always happy to hear from children or teachers about how our activities work. Don't worry if you haven't got a 'solution' as such.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?