There are **25** NRICH Mathematical resources connected to **Number bases**, you may find related items under Place value and the number system.

Challenge Level

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

Challenge Level

A garrison of 600 men has just enough bread ... but, with the news that the enemy was planning an attack... How many ounces of bread a day must each man in the garrison be allowed, to hold out 45 days against the siege of the enemy?

Challenge Level

How can Agent X transmit data on a faulty line and be sure that her message will get through?

Challenge Level

In 'Secret Transmissions', Agent X could send four-digit codes error free. Can you devise an error-correcting system for codes with more than four digits?

Challenge Level

How would you count the number of fingers in these pictures?

Challenge Level

Using balancing scales what is the least number of weights needed to weigh all integer masses from 1 to 1000? Placing some of the weights in the same pan as the object how many are needed?

Challenge Level

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.

This article for the young and old talks about the origins of our number system and the important role zero has to play in it.

An example of a simple Public Key code, called the Knapsack Code is described in this article, alongside some information on its origins. A knowledge of modular arithmetic is useful.

Challenge Level

You have worked out a secret code with a friend. Every letter in the alphabet can be represented by a binary value.

Challenge Level

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Challenge Level

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

We are used to writing numbers in base ten, using 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Eg. 75 means 7 tens and five units. This article explains how numbers can be written in any number base.

Challenge Level

There are two forms of counting on Vuvv - Zios count in base 3 and Zepts count in base 7. One day four of these creatures, two Zios and two Zepts, sat on the summit of a hill to count the legs of the creatures they could see. The creature looking to the West wrote 122. The creature looking to the East wrote 22. The creature looking to the South wrote 101. The creature looking to the North wrote 41. In which direction are the 2 Zios looking and in which directions are the 2 Zepts looking?

Challenge Level

The number 3723(in base 10) is written as 123 in another base. What is that base?

Challenge Level

This investigation is about happy numbers in the World of the Octopus where all numbers are written in base 8 ... Find all the fixed points and cycles for the happy number sequences in base 8.

Challenge Level

This investigation is about happy numbers in the World of the Octopus where all numbers are written in base 8 .Octi the octopus counts.

Challenge Level

Explore a number pattern which has the same symmetries in different bases.

Challenge Level

If a number N is expressed in binary by using only 'ones,' what can you say about its square (in binary)?

Challenge Level

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Challenge Level

Find all 3 digit numbers such that by adding the first digit, the square of the second and the cube of the third you get the original number, for example 1 + 3^2 + 5^3 = 135.

Challenge Level

Here are many ideas for you to investigate - all linked with the number 2000.

Challenge Level

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.